
The breaking strength of imperfect (real) polymer fibers

K.J. Smith Jr.* , J. Wang

SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA

Received 7 January 1997; received in revised form 23 December 1997; accepted 6 January 1999

Abstract

The thermodynamic fusion theory of strength of perfect polymer fibers of finite molecular weight is extended to include imperfect (i.e.
real) fibers of incomplete crystallinity and orientation. Approximate equations for failure strength, strain, and work of failure are derived by
extracting from the real visco-elastic fiber an equivalent reversible component suitable for thermodynamic analysis. This is facilitated by an
explicit relationship between fiber breaking stress,s* , and breaking strain,1* , which is shown to bes* � 0:632K1* (K � modulus) for
constant strain-rate deformations. It is shown that fiber breaking time is equivalent to the fiber visco-elastic mechanical relaxation time.
Experimental data shows that the activation energy of rupture of polyethylene fibers is not the activation energy of covalent bond rupture.
Instead it agrees with the activation energy expected of crystal melting in accordance with the fusion theory of rupture. The activation volume
of the polyethylene fibers also agrees with the value expected from this theory.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ultimate mechanical properties ofperfect polymeric
fibers composed offinite molecular weightpolymers were
successfully calculated via elementary phase equilibrium
thermodynamics six years ago [1]. Aperfectfiber is a fibril-
liform single crystal of complete orientation and 100% crys-
tallinity. It is a hypothetical entity that establishes
behavioral limits for real fibers, and these limits are easily
calculated because of the simplicity of the single crystal
concept. However, real fibers are imperfect or, at best,
nearly perfect. The nearly perfect fiber is a little short of
100% crystallinity and contains a small amount of disor-
iented (amorphous) material. To a first approximation, the
thermodynamic theory also applies to the nearly perfect,
real fiber with increasing accuracy as crystallinity
approaches 100%. The quantities of interest are the breaking
strength,s* , breaking strain,1* , and work to break,W* .

It is necessary to emphasize that the perfect fiber concept
pertains tofinite molecular weightpolymers only. Fibers
composed of molecules of infinite molecular weight,
wherein unbroken, continuous chains of covalent bonds
transcend the entire fiber length might require a different
theoretical approach. At present, this does not constitute a
meaningful restriction because real polymers are of limited

contour lengths. It is exactly this feature alone that insures
that fiber strength is determined by intermolecular cohesive
forces and not by stress-induced scissions of the polymer
backbone covalent bonds [1]. Crystalline intermolecular
forces, of course, translate into fusional energies or enthal-
pies. Noting that fusion energy per bond unit is nearly two
orders of magnitude lower than covalent bond strengths, it is
axiomatic that bond scissions play no role in initiating fail-
ure of theperfectfiber. In fact, empirical evidence suggest
that scission in a stressed fiber is confined mainly to the
amorphous regions and in amounts too small to influence
fiber rupture [2,3].

Intermolecular crystalline forces within the perfect fiber
resist external deformational forces. Clearly, a tensile force
attempts to pull the fiber (crystal) apart by sliding molecules
past one another, but molecules within a crystal do not have
an easy mobility. Estimates [4] of the molar internal cohe-
sive energy of a molecule approximately 1000 A˚ in contour
length (a molecular weight of,11 100, if polyethylene)
range from t3 to 10 times the –C–C– bond energy
(80 kcal/mol), the lower number pertaining to hydrocarbons
and the higher to hydrogen bonded polymers. A fully
extended polymer molecule 10 or 100 times larger in a
perfect fiber (crystal) is without doubt completely immobi-
lized, which prompts the usual conclusion that molecular
slippage is not feasible; rupture therefore must occur by
stress-induced bond scission [4]. Such a conclusion is
completely invalid. Indeed, polymer molecules cannot and
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do not slip and slide throughout the crystal. Molecular slip-
page and crystallization are antithetical concepts, actually
mutually exclusive, excepting the less stringent constraints
endowed to liquid crystals. What seems to have been persis-
tently overlooked, or perhaps misunderstood, is the possibi-
lity of a solid–melt phase transition, wherein a rigid, hard,
solid crystal abruptly changes at a particular temperature
and pressure into a liquid of mobile molecules. The crystal
lattice collapses at a single point. Before the collapse mole-
cules are immobilized within the crystal, afterwards they are
mobile. The cost of mobilization is energetically cheap.

A tensile force can induce the crystal–melt phase transi-
tion [1,5]. Since thecrystalline polymer molecules cannot
slip, the load acts effectively against intermolecular crystal-
line forces, destabilizing the fiber (crystal) and lowering its
melting temperature. If the tensile load is sufficient to
reduce the melting point to ambient temperature, the fiber
melts with concomitant slippage of molecules. Molecular
slippage constitutes fiber failure [1,5]. But it is unexpected
to see overall flow or telltale signs of melting such as
rounded edges on fracture faces, etc. The slightest diminu-
tion of stress below the critical level instantly regenerates
the crystal. Only an ephemeral, microscopic slip bridges the
gap between an intact crystalline fiber and its fractured
crystalline pieces. Transitional slip is instantaneous and
momentary.

All this is standard thermodynamics, so irrefutable that
only a wholesale repudiation of elementary thermody-
namics can nullify it. A crystalline fiber of finite molecular
weight molecules cannot exist as an intact fiber under a
tensile load in excess of that required for the phase transition
[1]. At this load the fiber ceases to be a fiber. In accordance
with thermodynamics, it will not support a greater load. But
it is possible for fracture to occur at a lesser load should an
alternative failure mechanism exist. We do not know of one,
and the close concordance of theoretical and experimental
strength of nearly perfect fibers of polyethylene and poly-
propylene leaves but little doubt that fiber strength is
determined by the critical fusion load [1].

The theory [1] yields for the perfect fiber of finite
molecular weight molecules:

W* � DHvln �To=T�;

s* � �2KcDHvln �To=T��1=2;

1* � 2DHv

Kc
ln�To=T�

� �1=2

;

where DHv is the heat of fusion per unit volume,Kc,
the crystal axial modulus,To, the melting temperature of
the unstressed fiber, andT, the melting temperature of the
stressed fiber (i.e. ambient temperature). Some of the
symbols are changed from the original paper to facilitate
clarity. A recent reinvestigation [5] of the theory of perfect
fibers shows that ln(To/T) must be replaced by (12 T/To).

This is because the earlier work omitted the variation of the
heat of fusion with tensile force. Accordingly, the preceding
equations must be replaced by

W* � DHv�1 2 T=To�; �1�

s* � 2KcDHv�1 2 T=To�
� �1=2

; �2�

1* � 2DHv

Kc
�1 2 T=To�

� �1=2

�3�

These results are predicated upon reversible, linear elas-
ticity, i.e. Hookean elastic behavior. Of the three, the work
to rupture,W* , is the most fundamental and the least ambig-
uous. It is determined by only two quantities, the unstressed
fiber (crystal) melting point and its heat of fusion, both of
which are drawn from data pools completely separate from
mechanical behavior. There are no adjustable parameters
here. As such, a close agreement between the work
predicted by Eq. (1) and the measured mechanical work
of rupture would constitute a strong confirmation of the
fusion theory of fiber failure. Both the breaking stress,s* ,
and the breaking strain,1* , are contained within the work,
W* , as factors thereof, but they cannot be extracted without
introduction of a third quantity, the Young’s modulus,Kc.
Since the crystalline modulus is currently problematic, both
the stress and the strain are mildly ambiguous compared to
the rigid certainty ofW* .

We have to work with real fibers that are imperfect: crys-
tallization is less than complete, stress distribution within
the fiber is likely to be inhomogeneous, time and irreversi-
bility are consequential, visco-elasticity is prominent, and
reversible thermodynamics plays a lesser role. To the extent
that all such deviations from the perfect fiber are small, the
equations of the perfect fiber can be adapted to the imperfect
fiber by replacingKc andDHv with the actual experimental
values of the real fiber,K 00 and DH 00v < vDHv; wherev
represents the degree of fiber crystallinity. This gives

W* < vDHv�1 2 T=To�; �4�

s* < �2vK 00DHv�1 2 T=To��1=2; �5�

1* <
2vDHv

K 00
�1 2 T=To�

� �1=2

: �6�

These are results previously given [1] and subsequently
corrected [5].

In this paper, we concentrate on the imperfect fiber and
the proper application thereto of Eqs. (4)–(6), which are
grounded in reversible thermodynamics yet contain irrevers-
ible components. We seek to amend the equations and/or
clarify their constraints of applicability in order to improve
our understanding of the imperfect fiber. To do this properly,
we first consider the role of time on ultimate mechanical
properties.
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2. Time, strength, and visco-elasticity

Zhurkov [6–9] and several collaborators made an impor-
tant contribution to fracture mechanics. They established for
a variety of materials—metals, alloys, crystals, and poly-
mers—an empirical equation relating the fracture time (life-
time), tB, to the tensile breaking stress,s* , of a standard
creep experiment:

tB � toexp��U±
c 2 V±

c s* �=RT�; �7�
whereU±

c , V±
c are material constants andto is a universal

time of t 10213 s. The form of the equation is that of a rate
process in whichU±

c constitutes the activation energy of
fracture andV±

c is the corresponding activation volume.
Both quantities were experimentally determined for each
material. For polymers,U±

c showed a close correspondence
to activation energies of thermal destruction, which led
Zhurkov to conclude that the process of polymer rupture
is determined by the “energy of breaking chemical
bonds.” This view has exerted powerful sway for more
than 25 years, yet the weight of evidence in its favor is
slight.

To begin, some of Zhurkov’s results are not, in fact, as he
claims. For example, his reported value ofU±

c for
poly(methyl methacrylate) is 54 kcal/mol, which is exactly
that cited to be the activation energy of thermal destruction
of PMMA. But one cannot obtain 54 kcal/mol from the data
of Zhurkov, rather the correct result is,30 kcal/mol. The
difference is significant. Concerning other polymers, a close
agreement between Zhurkov’s measured energies and the
activation energies of thermal degradation can be proble-
matic. Data compiled by T. He [10] reveal for poly-
vinychloride 95 kcal/mol versus Zhurkov’s 35 kcal/mol.
What about polyethylene? Zhurkov [7] found 113 kJ/mol
for U±

c for this material, and in this study we find 107 kJ/
mol (26 kcal/mol) as opposed to the bond energy of 80 kcal/
mol, or to the activation energy of thermal degradation,
72 kcal/mol [10].

If U±
c is not the activation energy of bond scission, what

might it be? The general answer to this question is obvious.
The experiment in question is creep, which is the response
of a visco-elastic element to a constant tensile load. Eq. (7),
therefore, pertains to visco-elastic creep. As such,U±

c and
V±

c are the corresponding activation quantities for creep.
Keep in mind that rupture is an irreversible process that
cannot occur without some degree, however small, of mole-
cular slip or flow (i.e. a visco-elastic response). Hence, the
mechanism of fracture must be identical to the mechanism
of visco-elastic flow. We prove this rather easily in the
following sections.

It is universally agreed that Eq. (7) is of the form of a rate
equation. The reciprocal of a mechanical rate constant is a
relaxation or retardation time. Therefore, the time to break,
tB, (lifetime) is a particular retardation time, to wit, that of
fracture. The creep deformation1 (strain) attributable to a
particular retardation timet of a Voigt–Kelvin visco-elastic

element supporting a constant stresss is

1 � s

K
�1 2 e2t=t�1

t
t

� �
; �8�

whereK is the spring modulus andt , the retardation time of
both dashpots, taken to be identical. Our condition of frac-
ture is t ! tB ; t. Thus, from Eq. (8)1 , s! 1* , s* as
t ! t; i.e.

1* � s*

K
2 2

1
e

� �
or

s* � e
2e2 1

� �
K1* � 0:613K1* : �9�

We now have a unique correlation ofs* with 1* that is
subject to rigorous verification. However, we move on to
a more convenient visco-elastic experiment—that of
constant rate of strain.

Forced deformation at a constant rate of strain,_1 ;

_1 � d1
dt
� 1

t
� constant �10�

is fundamentally stress relaxation. Two advantages are asso-
ciated with it. First, the experiment is easily performed on
an Instron, wherebyt and 1* are related by Eq. (10).
Second, the appropriate visco-elastic model is the simple
Maxwell unit consisting of a single spring and dashpot
connected in series. A single relaxation timet renders it
unambiguous. The stresss and deformational workW are
well known for this situation:

s � tK _1�1 2 e2t=t�; �11�

W � t _1K1 2 �t _1�2K�1 2 e2t=t�; �12�
where K is the spring modulus orinitial modulus. Our
condition of fracture must also apply to this situation.
Thus, the rupture conditiont ! tB ; t and Eq. (10) yield
from Eqs. (11) and (12) the followingvisco-elasticresults

s* � 1 2
1
e

� �
K1* � 0:632K1* ; �13�

W* � K12
*

e
� 0:368K12

* : �14�
An experimentalconfirmation that the fracture principle

does apply to constant strain rate experiments, and an
experimentalvalidation of the visco-elastic result Eq. (13)
constitute the necessary proof that the mechanism of frac-
ture is indeed identical to the mechanism of visco-elastic
flow, the proofs of which are shown in Sections 3 and 4.

3. Experimental proof I

We show that ln (tB) is linear withs* in a constant rate of
strain deformation for a set of non-identical fibers of the
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same species. First, it is necessary to establish for a creep
deformation the values ofU±

c and V±
c for high strength

polyethylene fibers. The literature reveals variations in
both quantities, as shown in Table 1. Only the values of
V±

c are problematic as it is generally thought to be structure
sensitive. We made six determinations via creep at 258C of
GUR 412 polyethylene fibers prepared by gel spinning in
the manner described in the following paper [11], reported
in Table 1. Differing units ofV±

c are converted to m3/mol.
The results reported in Ref. [15] are obtained by plotting the
reported data from Fig. 6 at 258C as ln (tB) versuss* . Our
six determinations gaveU±

c � 107 kJ/mol and an average
V±

c � 1.6 × 1025 m3/mol. The results ofV±
c are reported

here as an average simply to indicate an order of magnitude.
Averaging all data in Table 1 givesU±

c � 110 kJ/mol and
V±

c � 1.59× 1025 m3/mol.
Since our valueU±

c � 107 kJ/mol (26 kcal/mol) is
certainly not the activation energy of C–C bond rupture
(335 kJ/mol or 80 kcal/mol), we conclude without doubt
that polyethylene fibers do not fail as a result of stress-
induced bond scission as Zhurkov’s idea would have it.

U±
c is instead the activation energy of visco-elastic creep

or flow. We suggest that a highly crystalline,imperfectfiber
is essentially immobile unless molecules can be activated or
released into motion, however minute. This could happen if

melting occurs on a microscopic scale within a real, inho-
mogeneous fiber, which must have a corresponding inho-
mogeneous stress distribution. In this fashion microscopic
melting and recrystallization follow the ever shifting over-
stressed zones and provide ephemeral molecular motions
that eventually lead to failure. The activation energy should,
therefore, be that of melting (fusion), and that is just the
energy of melting, or the heat of fusion since the volume
change is negligible. We know from Krausz and Eyring [12]
that the kinetic unit of molten polymer flow is a sub-mole-
cular segment of approximately 25 methylene units. At
258C, this number should be larger. The heat of fusion of
polyethylene at 258C is 3.43 kJ/mol of CH2 units [13]. Thus,
the activation energy of 107 kJ/mol corresponds to melting
31 methylene units—a reasonable value for flow at 258C.

If U±
c relates to slip (melting), so too mustV±

c . The
activation volume is the volume through which a unit
must pass in moving from an equilibrium position of mini-
mum potential energy to a position of maximum potential
energy that the unit must surmount and pass over in order to
slip or flow. Referring to Fig. 1, the position of least poten-
tial energy is at the left, where all methylene groups are
farthest apart; repulsive forces here are minimum. The
configuration at the right, where the center chain is shifted
horizontally by one methylene unit, bringing all units into
greater conflict with neighboring chains, is of maximum
potential energy because of the close proximity of non-
bonded methylene units. Here, the repulsive forces are
maximum. Then clearly the activation lengthL±

c is that of
a lateral shift by the amount of a spacing of one methylene
unit. Multiplying this length by the cross-sectional areaA of
a crystalline chain gives the activation volumeV±

c � L±
c A,

which is on a molar basis the molar volume of crystalline
methylene units. That is,V±

c � 1.4× 1025 m3/mol for poly-
ethylene at 258C. This is within 15% of the average experi-
mental value already mentioned.

Of course, the stress causing slip or melting is that on
the crystalc-axis, which is not necessarily the fiber stress
that is actually measured. Without a homogeneous stress
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Table 1
Activation energyU± and volumeV± of polyethylene fibers

Reference U± (kJ/mol) V± × 105 (m3/mol)

[7] 113 1.06
[7] 117 2.42
[15] 119 1.24
[16] 110 —
This work 107 2.35
This work 107 1.92
This work 107 1.76
This work 107 1.52
This work 107 1.15
This work 107 0.93

Fig. 1. Schematic (not actual) diagram of polyethylene molecular slippage.



distribution the two will differ and generate an erroneous
apparent activation volumeV±

app� gV±
c , whereg is a coef-

ficient incorporating the necessary stress inhomogeneity.
The apparent activation volume is also sensitive to errors
in the fiber stress in an inverse fashion. If the value of the
fiber stress is twice its true value because of error, the deter-
mined value of the activation volume will be one-half its
true value, and vice versa. Stress error may result from
calibration error, inconstant fiber cross-section along its
length, surface wedges, incorrect cross-section determina-
tion, and large scale inhomogeneity within the fiber (affect-
ing the local modulus). These errors are also included in the
coefficientg . It is, therefore, quite clear that wide, incoher-
ent variations in activation volume should be commonly
observed.

If indeed Eq. (7) applies to the constant rate of strain
procedures, ln (tB) must vary linearly withs* . Data in the
literature for polyethylene fibers [14] are plotted in Fig. 2.
Breaking time was calculated from breaking strain using Eq.
(10) and _1 � 0:011s21 as reported. The result is linear,
except for one point at very low stress where deviations
from linearity are well known, and expected [6]. From the
intercept and slopeU± � 18.9 kcal/mol andV± � 4.13×
1027 m3/mol, respectively. These values differ from those of
creep experiments, but such changes are due to constraints
imposed on time by a controlled rate of strain, a variable
programmed into the instrument. Here we do not affix the

subscriptc to U±, V± in order to distinguish them from the
corresponding creep valuesU±

c , V±
c .

In creep, the rate of strain_1c* is obtained from the time
derivative of Eq. (8):

_1c* � s*

tcK
1 1

1
e

� �
which upon combination with Eq. (11), for constant strain
rate _1 � _1* gives for the ratio of breaking times (or retarda-
tion times) at the same stress and modulus:

tc

t
� 1 2

1
e2

� �
_1

_1c*
:

The equation shows clearly that the time ratio is determined
solely by strain-rate ratio.

Now, applying Eq. (7) to both experimental conditions,
creep and constant strain rate, we have in the limits* ! 0

t0
c

t0 � exp
�U±

c 2 U±�
RT

" #
or

U±
c � U± 1 RTln�t0

c=t
0�; �15�

where the superscript 0 indicates zero breaking stress. Ast0

(or t ) is determined by the strain rate_1* , Eq. (15) reveals
how U± is related to_1* . If _1* is increased,t (andt0) must
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Fig. 2. Breaking timet � tB versus strength for the constant strain rate experiments of Ref. [14].



decrease. That is, a greater rate of strain must decrease the
time to break, and therefore,U± must decrease also. Note
that t0 for a set ofidentical strain rate experiments repre-
sents the following condition:

s* / �vKi�1=2 ! 0

which requires a set ofnon-identicalfibers. In this situation
the breaking stresss* cannot be arbitrarily chosen foriden-
tical fibers, in contrast to creep. Identical fibers stretched at
the same constant rate (machine driven) break at the same
stress.

To find a corresponding relationship betweenV±andV±
c ,

we focus on the point where breaking times and breaking
stresses are equal in the two experiments; i.e.
tc ; t;sc

* ; s* . Using these conditions and Eq. (7) for
both experiments, we have

t0

t0
c

e2
s*
RT �V

±2V±
c � ; 1

or

V±
c � V± 1

RT
s*

ln�t0
c=t

0�: �16�

Substitution of Eq. (15) into Eq. (16) gives

U± 2 s* V± � U±
c 2 s* V±

c : �17�
In Eq. (16) and (17), the stresss* is not general but the

specific stress at whichtc � t.

4. Experimental proof II

It remains to prove Eq. (13). For this we use the same data
from the literature [14], plotted in Fig. 3 ass* versusK1* .
The experimental slope is 0.64, compared to the theoretical
value of 0.632—about 2% difference. The clear linearity of
the plot validates our identification of breaking time with a
visco-elastic relaxation time, and the close agreement of the
experimental slope with our theoretical value (0.632)
appears to justify our consideration of a single relaxation
time rather than a relaxation spectrum. A spectrum is prob-
ably not required for crystals, for which we expect a nearly
monodisperse distribution. At any rate this question is to be
answered by experimentation and causes no problem of
serious consequence. The figure supports a single relaxation
time. This completes our proof that the mechanism of frac-
ture is identical to the mechanism of visco-elastic flow.
Additional experimental proof appears in the following
paper [11].

5. The Imperfect fiber

Returning to the imperfect fiber, as represented by the
approximations, Eqs. (4)–(6), we now consider a means to
convert the approximations into equivalencies nearly on par
with the perfect fiber represented by Eqs. (1)–(3). This
requires that Eqs. (4)–(6) be constrained to the reversibility
requirement of equilibrium thermodynamics upon which the
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fusion theory of fracture is founded. Note that Eqs. (4)–(6)
actually represent, and correctly so, aperfectfiber of modu-
lus K 00, heat of fusionDH 00v < vDHv, and melting tempera-
tureTo, just as rigorously as Eqs. (1)–(3) represent aperfect
fiber of modulusKc, heat of fusionDHv, and melting
temperatureTo. Recognizing this, we simply define an
equivalent perfectfiber—i.e. anequivalent perfectcrys-
tal—that has the same modulus, heat of fusion, and melting
point as the real, imperfect fiber. The modulus is theinitial
modulus of the imperfect fiber. Further, we require the load
on the equivalent fiber to be the same at all times as that on
the real fiber. Consistent with the Hookean elastic behavior
incorporated into the fusion theory, the equivalent perfect
fiber must be reversibly Hookean also. The various proper-
ties of the equivalent fiber are denoted by the subscripti.
Thus, Eqs. (4)–(6) are relevant to the propertiesKi, DHi, 1 i

(Hookean strain), andTi, all of which represent equivalent
equilibrium, reversible components of the real visco-elastic
fiber. The equivalent fiber is simply the elastic component of
the real fiber absent the viscous, kinetic component.

Properties of the real fiber and its equivalent fiber are
shown in Fig. 4. Young’s modulus,Ki, is the initial slope
of the stress–strain curve. Work of rupture of the equivalent
fiber,Wi, is less than that of the imperfect fiber,W* . So too is

the strain at break,1 i , 1 *. For the relationships between
the real and equivalent fibers, we have:

s* � Ki1i � 1 2
1
e

� �
Ki1* ; �18�

1i � 1 2
1
e

� �
1* ; �19�

W* � Ki1
2
*

e
� 2e

�e2 1�2
� �

Wi � Area �uuuu� in Fig: 4; �20�

Wi � s2
*

2Ki
� Ki1

2
i

2
� s*1i

2
� Area �;� in Fig:4: �21�

The corresponding thermodynamic equations pertaining
to the equivalent fiber are

si � s* � �2KiWi�1=2; �22�

1i � �2Wi =Ki�1=2; �23�
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Fig. 4. Theoretical behavior of stress versus strain for a constant strain rate process, Eq. (1).tB� t � 5 s,Ki � 150 GPa,1 � 0.01 s21, s* � 4.74 GPa. Shaded
areas are defined in text, Eqs. (20) and (21).



1* � e
e2 1

� �
�2Wi =Ki�1=2; �24�

Wi � DHi�1 2 T=Ti�: �25�
These two sets, Eqs. (18)–(21) and Eqs. (22)–(25),

appropriately combine the kinetic and thermodynamic
features of fracture of polymer crystalline fibers (of finite
molecular weight polymers).

For highly crystalline fibers (nearly perfect), a good
approximation is to letDHi < vDHv andTi < To, so that

Wi < vDHv�1 2 T=To�: �26�
The preceding equations then become identical to Eqs. (4)–
(6), with the exception of Eq. (6) which must be replaced by
Eq. (24). The breaking strain given by Eq. (6), now seen to
be incorrectly labeled1* , is in fact the breaking strain1 i of
the equivalent fiber, Eq. (23), and the breaking strain1* of
the real fiber is now seen to be that of Eq. (24).

As crystallinity progressively decreases, we expect the
divergenceTi , To in conformity with experimental obser-
vations. Another source of error is associated with the work
Wi. Eqs. (25) and (26) contain the approximation that the
heat of fusion is independent of temperature [5]. The effect
of this approximation is to overstate the value ofWi by
perhaps several percent, whereas its true value must be
Wi , vDHv�1 2 T=To�:

The foregoing equations for the imperfect fiber are
experimentally analyzed and verified in the following
paper [11].

6. Discussion

Differences between the imperfect and perfect fibers are
several: crystallization, order, orientation, extensibility,
modulus, strength, reversibility, etc. The perfect fiber,
which is completely crystalline, therefore perfectly
oriented, is thermodynamically uncomplicated because its
perfect fibrilliform crystal structure is both uniform and
elastically reversible. Molecular weight of its constituent
polymer is large but finite. Because the perfect fiber is
devoid of all defects, surface and interior, its work of failure
must be determined by the tensile work required to induce
melting provided a failure mechanism of lower work is not
available. Ultra-stable infusible substances such as graphite,
which is a rigid two-dimensional platelet crystal, may be
infusible under any load at room temperature. But most
linear crystalline polymers should qualify for the fusion
mechanism. For these materials the reversible work of
fusion (failure) is an invariant characterization constant at
a specifiedT, P. So too is the modulus, ultimate strength and
strain.

The definition of the perfect fiber is not arbitrary and
cannot be changed whimsically to suit an individual
fancy. The concept refers to an actual real linear crystalline
polymer in hand and takes into account any and all of its

thermodynamical characteristics. Tacticity is an example.
Molecular weight is another, at least in principle. But in
practice molecular weight is of no consequence for the
perfect fiber, especially high molecular weight. In the
realm of high, but finite, molecular weight, fiber (crystal)
thermodynamics are essentially independent of variations in
the small number of molecular end units; melting tempera-
ture, heat and entropy of fusion, and fiber modulus are not
affected. Neither does molecular weight distribution matter
for the perfect fiber. Nowhere in the fusion theory do these
factors appear [1,5].

The perfect fiber is anidealfiber; its thermodynamic state
is a reference state, or a standard state of unit activity at
standard temperature and pressure.Ideal refers to the ulti-
mate standard of fiber perfection for the material in ques-
tion. Perfectand ideal are interchangeable terms.

The perfect fiber cannot be prepared via existing spinning
technology. Real fibers of real polymers—always of large
but finite molecular weight—are imperfect, never ideal. The
extent of imperfection depends upon polymer molecular
weight and distribution, and various details of the specific
preparation process, which significantly modify properties
such as strength, modulus, work, and reversibility. Since the
only unique definitive state of a polymer fiber is its ideal
(perfect) state, completely described by state variables
temperature and pressure, a real (imperfect) fiber might be
considered (and analyzed) as a variation or deviation from
its ideal state. In this view, fibers of few imperfections (i.e.
nearly perfect fibers) are more accurately represented than
those with major imperfections; fibers of high crystallinity
and ultra-high draw ratios are best. At the other extreme
major difficulties should be anticipated.

Real (imperfect) fibers are partially crystalline and visco-
elastic (mechanically irreversible). Anequivalentfiber is
introduced to account partially for these difficulties. The
equivalentfiber is defined as a reversible, Hookean fiber
that behaves as a perfect fiber possessing the same bulk
thermodynamic properties as the actual fiber. Its modulus
is that of the initial Young’s modulus of the real fiber,Ki,
and its strength is the same as the real fiber’s, which by Eqs.
(22) and (26) is

s* < �2vKiWc�1=2: �27�

The work of failure of theperfectfiber is Wc and that of
the equivalent fiber is Wi < vWc. Because strength is
proportional to (vKi )

1/2, Eq. (27), some facets of imperfec-
tion—crystallinity, morphology, draw ratio, orientation,
molecular weight and molecular weight distribution,
etc.—are incorporated into the values ofv and Ki to a
first approximation. Ideally, the variation ofs* with the
product (vKi )

1/2 represents a master line of slope (2Wc)
1/2

and intercept ofs* � sc � �2KcWc�1=2 at the positionv � 1
(i.e.vKi ! Kc). All fibers of a kind should scatter along and
about this master line, with nearly perfect fibers collecting
into the high strength region. But the equivalent fiber is
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merely an approximation of a nearly perfect fiber. Its valid-
ity and usefulness might be questioned as crystallinity and
orientation progressively decrease—i.e. asvKi decreases.
In such cases we should expects* , �2vKiWc�1=2. Thus, at
high vKi the strengths* is better represented by Eq. (27)
than at smallervKi. The line drawn from the origin through
the high points,�vKi�1=2; of nearly perfect fibers should
supply a good approximation ofWc via the slope. This
line, therefore, is not strictly a master line for all fibers of
a kind, but only so for high strength nearly perfect fibers,
whose points fall along and about the line at the high end
and below the line at the low end where the equivalent fiber
concept fails.

A series of fibers of various strengths, moduli, and crys-
tallinities may be plotted in accordance with Eq. (27) to
determine from the slope an experimental value ofWc for
the perfect fiber. AsWc may be independently calculated,
essentially a priori, with the fusion theory [5], a direct
means of validation or refutation of the theory is readily
available. If the value ofWc is known, we require onlys c

or Kc or 1 c to characterize the perfect fiber completely. For
example, the value ofs c might be found by extrapolation of
strengths* versusv to v � 1. This procedure is perfectly
valid since afiberof 100% crystallization can be nothing but
a perfect fiber. How else can complete crystallization of a
fiber exist?

It is necessary to emphasize that the equivalent fiber is not
real, but only hypothetical and imaginary, an artifice
constructed to circumvent detailed morphological depic-
tions of actual real fibers that generally are impossible to
detail with satisfactory accuracy. In the limit of nearly
perfect fibers, deviating but slightly from the perfect, the
artifice should be satisfactory. However, for usual fibers
(roughly 50% crystallization and draw ratios of about 1 to
5 or 6) of say nylon, polyester, etc., only qualitative accu-
racy, or a little better, should be expected. This is because
deformational work of non-crystalline regions within the
fiber is omitted from our theory. If crystallinity and orienta-
tion are high, this omission should not be serious. If orienta-
tion (i.e. draw ratio) is low, fiber morphology changes
during failure tests (cold drawing), which is not included
in the theory. An undrawn polyethylene fiber spun from
dilute solution, after drying can be drawn by a factor of
100 or more.

Drawing, cold and hot, enhances the mechanical proper-
ties of polymer fibers. Both modulus and strength are
increased by drawing. The modulus is influenced by the
degree of crystallization, which converts a portion of the
soft, pliable amorphous polymer into strong, rigid, inexten-
sible high modulus crystalline regions. The greater the crys-
tallization, the greater the fiber modulus. Fiber morphology
also affects the modulus; a higher proportion of, effectively,
parallel crystalline-amorphous coupling translates into a
higher fiber modulus. Thus,Ki (or K 0) reflects both the
degree of crystallization and fiber morphology. As a
rough, but useful generalization, we can say that for a

given fiber morphology, greater crystallization produces a
greater modulus, for the simple reason that soft pliable
regions in the fiber are replaced by hard, inextensible crys-
talline zones; and that at constant crystallization, higher
draw ratios rearrange the fiber morphology to produce
higher moduli—both crystalline and amorphous regions
are affected by drawing. Hence, the fusion theory of strength
correlates strength withv (crystallization) andKi (morphol-
ogy and crystallization).

The degree of crystallizationv determines the heat
requirement for melting, or the mechanical work of failure.
By the fusion theory of strength, melting corresponds to
fiber failure. Solid, hard crystalline zones are converted
into a soft, liquid-like melt devoid of dimensional stability.
It is tempting to consider molecular slippage in amorphous
areas to be a cause of failure, since amorphous slippage must
involve less energy than fusion. But this cannot be correct.
Which molecules slip? And where do they slip to? In a real
fiber, crystallites are connected to one another by amor-
phous tie chains that also participate in the crystalline
regions. They are all the same molecules, except for a few
dangling, unconnected, molecular end chains. Without this
molecular continuation through crystal–amorphous–crystal
regions there can be no fiber at all. This connectivity
provides necessary dimensional stability. A tensile force
on the fiber cannot produce amorphous slippage and
cause rupture: there is no place to slip to if both ends of
the tie molecules are firmly embedded in crystallites.
But the tie molecules transmit forces to the crystallites
that, if sufficient, cause melting, consequent overall
molecular slippage, and recrystallization with or without
fiber rupture.

An important principle established by this work is the
condition of fracturetB ! t , where t is a visco-elastic
retardation/relaxation time. This principle requires that fail-
ure stresss* be proportional to the product of initial modu-
lus Ki and failure strain1* . For the simple visco-elastic
models used herein the proportionality constant is 0.613
for creep and 0.632 for constant strain-rate deformations.
More complex models as well as a possible retardation/
relaxation spectrum may refine these numbers. The prin-
ciple aids in the analysis of fibers and in the construction
of the equivalent fiber required for a thermodynamic analy-
sis of failure. But the equivalent fiber can be constructed
with or without the fracture principle. It stands firm in its
own right regardless of activation energies and volumes. So
too is the fusion theory of imperfect fibers independent of
such factors.
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